MCP Quickstart
A free, professional, open-source financial analysis and quantitative trading MCP server. It lets you deploy a local financial MCP service with one command, using a departmental architecture that simulates a real financial firm’s operations. It supports traditional indicators, price action analysis, economic calendar, fundamentals, and news integration—providing seamless interaction with LLMs and algorithmic trading.
✨ Features
- 🚀 One-click deployment: Quickly spin up a local financial MCP service
- 🏢 Departmental architecture: Simulates real-world financial company departments
- 📊 Comprehensive analysis: Traditional technical indicators + price action analysis
- 📅 Real-time data: Economic calendar, fundamentals, and news integration
- 🤖 AI integration: Interfaces optimized for LLMs
- ⚡ High performance: Real-time streaming OHLC data processing
- 🔧 Extensible: Support for custom MCP services
GitHub
- Repository: https://github.com/aitrados/finance-trading-ai-agents-mcp
- Embed system prompts into your LLM (e.g., LangChain): https://github.com/aitrados/finance-trading-ai-agents-mcp/tree/main/basic_system_prompt_words
- Simple examples: https://github.com/aitrados/finance-trading-ai-agents-mcp/tree/main/finance_trading_ai_agents_mcp/examples
1. Installation
- Recommended (PyPI):
pip install finance-trading-ai-agents-mcp
2. Fastest path to run (Python)
Save the following as main.py and run it:
from finance_trading_ai_agents_mcp import mcp_run
from finance_trading_ai_agents_mcp.examples.env_example import get_example_env
if __name__ == "__main__":
get_example_env() # write example environment variables
mcp_run() # start the MCP service
After it starts, open your browser at: http://127.0.0.1:11999/
Tip: You need a free AITRADOS_SECRET_KEY to access financial data → https://www.aitrados.com/

3. Command-line (CLI) one-liners
- Show help:
finance-trading-ai-agents-mcp --help
- Quick start (minimal config):
finance-trading-ai-agents-mcp --env-config {"DEBUG":"1","AITRADOS_SECRET_KEY":"YOUR_SECRET_KEY"}
- Specify port:
python -m finance_trading_ai_agents_mcp -p 9000 --env-config {"DEBUG":"1","AITRADOS_SECRET_KEY":"YOUR_SECRET_KEY"}
- Use a custom MCP capability file:
python -m finance_trading_ai_agents_mcp -c finance_trading_ai_agents_mcp/examples/addition_custom_mcp_examples/addition_custom_mcp_example.py --env-config {"DEBUG":"1","AITRADOS_SECRET_KEY":"YOUR_SECRET_KEY"}
4. Required environment configuration (minimal)
Create a .env file in the project root (or pass values via –env-config):
# Debug
DEBUG=true
# Get for free at https://www.aitrados.com/
AITRADOS_SECRET_KEY=YOUR_SECRET_KEY
# Max number of OHLC rows for LLM output only (does not affect strategy calculations)
OHLC_LIMIT_FOR_LLM=30
# Rename the column name from interval to timeframe (example)
RENAME_COLUMN_NAME_MAPPING_FOR_LLM=interval:timeframe,
# Minimal columns to provide to the LLM
OHLC_COLUMN_NAMES_FOR_LLM=timeframe,close_datetime,open,high,low,close,volume
Advanced options (optional):
- LIVE_STREAMING_OHLC_LIMIT defaults to 150; if you need long-period indicators like MA200, increase it appropriately.
5. A few advanced steps (optional)
- Custom MCP services and functions:
from finance_trading_ai_agents_mcp import mcp_run
from finance_trading_ai_agents_mcp.examples.env_example import get_example_env
if __name__ == "__main__":
get_example_env()
from finance_trading_ai_agents_mcp.examples.addition_custom_mcp_examples.addition_custom_mcp_example import AdditionCustomMcpExample
AdditionCustomMcpExample()
mcp_run()
- Reuse real-time WebSocket data + MCP simultaneously: see examples/run_mcp_examples/run_mcp_with_callback_real_time_websocks_data_example.py
6. Documentation and examples
- Full docs: https://docs.aitrados.com
- GitHub: https://github.com/aitrados/finance-trading-ai-agents-mcp
— You’re all set. Start the service and let AI and real-time financial data work seamlessly in your workflow.