Economic Event List
Economic Event List Endpoint
Retrieve a comprehensive list of economic calendar events with detailed information.
Endpoint URL
GET /api/v2/economic_calendar/event_list
Description
This endpoint allows users to retrieve a list of economic calendar events with filtering options by country, event code, date range, and other parameters. The events include important economic indicators, central bank decisions, and other significant economic announcements that impact financial markets.
Request Parameters
Query Parameters
Parameter | Type | Required | Default | Description |
---|---|---|---|---|
secret_key |
string | Yes | - | Your API key (min length 20) |
country_iso_code |
string | No | - | Country ISO code (e.g., “US”, “CN”, “UK”, “EU”, “DE”, “FR”, “JP”, “AU”, “CA”, “CH”, “HK”) |
event_code |
string | No | - | Specific event code to filter by |
source_id |
string | No | - | Source ID (length 64) |
from_date |
datetime | No | - | Start date for filtering events (YYYY-MM-DD format) |
to_date |
datetime | No | - | End date for filtering events (YYYY-MM-DD format) |
sort |
string | No | “asc” | Sort direction (“asc” or “desc”) |
limit |
integer | No | 100 | Number of results to return (default 100, max 1001) |
format |
string | No | “csv” | Data format (“json” or “csv”) |
next_page_key |
string | No | - | Key for pagination to retrieve the next set of results |
Response
Response Fields
Field | Type | Description |
---|---|---|
status |
string | Request status (“ok” or “error”) |
code |
integer | HTTP status code |
message |
string | Status message |
reference |
string | Reference ID (null if not applicable) |
result |
object | Contains the economic events data and pagination information |
Result Object Fields
Field | Type | Description |
---|---|---|
next_page_key |
string | Key for retrieving the next page of results |
next_page_url |
string | Complete URL for the next page of results |
count |
integer | Number of records in the current response |
data |
array | Array of economic event records |
Economic Event Fields
Field | Type | Description |
---|---|---|
country_iso_code |
string | ISO country code |
event_code |
string | Code representing the type of economic event |
event_name |
string | Human-readable name of the event |
event_driven_type |
string | Type of event (“time_driven” or “data_driven”) |
importance |
integer | Numeric importance level (typically 1-3, where 3 is highest) |
impact |
string | Text representation of importance (“low”, “medium”, “high”) |
event_timestamp |
string | Date and time of the event in ISO format |
actual_value |
number | Actual value reported for the event |
previous_value |
number | Previous period’s value |
forecast_value |
number | Forecasted value before the event |
change |
number | Absolute change from previous value |
change_percent |
number | Percentage change from previous value |
period |
string | Period covered by the data (e.g., “Jul”, “Q2”) |
unit |
string | Unit of measurement for the values |
source_id |
string | Unique identifier for the data source |
Request Example
GET https://default.dataset-api.aitrados.com/api/v2/economic_calendar/event_list?country_iso_code=US&limit=100&format=json&limit=2&secret_key=your-secret-key
Response Example
{
"status": "ok",
"code": 200,
"message": "success",
"reference": null,
"result": {
"next_page_key": "c6a6bee7ed83630b8910c294acf1978e215096d495a451873ccbc0d2b9bed4d8",
"next_page_url": "https://default.dataset-api.aitrados.com/api/v2/economic_calendar/event_list?country_iso_code=US&sort=asc&limit=100&format=json&limit=2&secret_key=your-secret-key&next_page_key=c6a6bee7ed83630b8910c294acf1978e215096d495a451873ccbc0d2b9bed4d8",
"count": 2,
"data": [
{
"country_iso_code": "US",
"event_code": "BUSINESS_PMI_NON_MANUFACTURING_ISM",
"event_name": "ISM Non-Manufacturing PMI",
"event_driven_type": "time_driven",
"importance": 3,
"impact": "high",
"event_timestamp": "2024-08-05T13:00:00Z",
"actual_value": 51.4,
"previous_value": 48.8,
"forecast_value": 51.4,
"change": 2.6,
"change_percent": 0.0,
"period": "Jul",
"unit": "N/A",
"source_id": "460b29c68f3590c1a6500b719cf9b4fc41f16b09d3ebb2a6c337fe41c1a75040"
},
{
"country_iso_code": "US",
"event_code": "BUSINESS_PMI_NON_MANUFACTURING_PRICES_ISM",
"event_name": "ISM Non-Manufacturing Prices",
"event_driven_type": "time_driven",
"importance": 3,
"impact": "high",
"event_timestamp": "2024-08-05T13:00:00Z",
"actual_value": 57.0,
"previous_value": 56.3,
"forecast_value": 56.0,
"change": 0.7,
"change_percent": 0.0,
"period": "Jul",
"unit": "N/A",
"source_id": "2189bd77ba5a7b278a60b0128fa6b609ba65f13cad7c699d065fe655e5a510af"
}
]
}
}
Code Example
Python
import os
from datetime import datetime, timedelta
from aitrados_api import ClientConfig
from aitrados_api import DatasetClient
config = ClientConfig(
secret_key=os.getenv("AITRADOS_SECRET_KEY","YOUR_SECRET_KEY"),
)
client = DatasetClient(config=config)
# Get economic event list for US
for event_list in client.economic.event_list(country_iso_code="US"):
print(event_list)
# Get economic events with specific event code (e.g., inflation rate)
for event_list in client.economic.event_list(
country_iso_code="US",
event_code="INFLATION_RATE_HEADLINE_YOY",
limit=10
):
print(event_list)
Notes
-
The
importance
field (numeric value 1-3) andimpact
field (text “low”, “medium”, “high”) help identify which events are likely to have the most significant market impact. High importance events (importance=3) are typically major releases like GDP, inflation, or central bank decisions. -
The
event_driven_type
field distinguishes between regularly scheduled economic releases (“time_driven”) and events that occur in response to specific conditions. -
The
change
andchange_percent
fields help quickly identify the magnitude and direction of change in an economic indicator compared to its previous reading. -
For comprehensive market analysis, it’s valuable to compare the
actual_value
against both theforecast_value
(market expectations) andprevious_value
(trend). Significant deviations between actual and forecast values often trigger market volatility. -
The
period
field indicates the time period covered by the data (e.g., month, quarter). This is important for contextualizing the data, especially for seasonal indicators. -
Using the
next_page_key
parameter enables efficient pagination through large datasets when the number of events exceeds the limit parameter. -
The
source_id
field provides a unique identifier for the data source, which can be useful for tracking or referencing specific data points in your applications. -
When analyzing economic events across multiple countries, consider using the ISO country codes to systematically retrieve and compare data across different economies.