Economic Event List Endpoint

Retrieve a comprehensive list of economic calendar events with detailed information.

Endpoint URL

  GET /api/v2/economic_calendar/event_list
  

Description

This endpoint allows users to retrieve a list of economic calendar events with filtering options by country, event code, date range, and other parameters. The events include important economic indicators, central bank decisions, and other significant economic announcements that impact financial markets.

Request Parameters

Query Parameters

Parameter Type Required Default Description
secret_key string Yes - Your API key (min length 20)
country_iso_code string No - Country ISO code (e.g., “US”, “CN”, “UK”, “EU”, “DE”, “FR”, “JP”, “AU”, “CA”, “CH”, “HK”)
event_code string No - Specific event code to filter by
source_id string No - Source ID (length 64)
from_date datetime No - Start date for filtering events (YYYY-MM-DD format)
to_date datetime No - End date for filtering events (YYYY-MM-DD format)
sort string No “asc” Sort direction (“asc” or “desc”)
limit integer No 100 Number of results to return (default 100, max 1001)
format string No “csv” Data format (“json” or “csv”)
next_page_key string No - Key for pagination to retrieve the next set of results

Response

Response Fields

Field Type Description
status string Request status (“ok” or “error”)
code integer HTTP status code
message string Status message
reference string Reference ID (null if not applicable)
result object Contains the economic events data and pagination information

Result Object Fields

Field Type Description
next_page_key string Key for retrieving the next page of results
next_page_url string Complete URL for the next page of results
count integer Number of records in the current response
data array Array of economic event records

Economic Event Fields

Field Type Description
country_iso_code string ISO country code
event_code string Code representing the type of economic event
event_name string Human-readable name of the event
event_driven_type string Type of event (“time_driven” or “data_driven”)
importance integer Numeric importance level (typically 1-3, where 3 is highest)
impact string Text representation of importance (“low”, “medium”, “high”)
event_timestamp string Date and time of the event in ISO format
actual_value number Actual value reported for the event
previous_value number Previous period’s value
forecast_value number Forecasted value before the event
change number Absolute change from previous value
change_percent number Percentage change from previous value
period string Period covered by the data (e.g., “Jul”, “Q2”)
unit string Unit of measurement for the values
source_id string Unique identifier for the data source

Request Example

  GET https://default.dataset-api.aitrados.com/api/v2/economic_calendar/event_list?country_iso_code=US&limit=100&format=json&limit=2&secret_key=your-secret-key
  

Response Example

  {
  "status": "ok",
  "code": 200,
  "message": "success",
  "reference": null,
  "result": {
    "next_page_key": "c6a6bee7ed83630b8910c294acf1978e215096d495a451873ccbc0d2b9bed4d8",
    "next_page_url": "https://default.dataset-api.aitrados.com/api/v2/economic_calendar/event_list?country_iso_code=US&sort=asc&limit=100&format=json&limit=2&secret_key=your-secret-key&next_page_key=c6a6bee7ed83630b8910c294acf1978e215096d495a451873ccbc0d2b9bed4d8",
    "count": 2,
    "data": [
      {
        "country_iso_code": "US",
        "event_code": "BUSINESS_PMI_NON_MANUFACTURING_ISM",
        "event_name": "ISM Non-Manufacturing PMI",
        "event_driven_type": "time_driven",
        "importance": 3,
        "impact": "high",
        "event_timestamp": "2024-08-05T13:00:00Z",
        "actual_value": 51.4,
        "previous_value": 48.8,
        "forecast_value": 51.4,
        "change": 2.6,
        "change_percent": 0.0,
        "period": "Jul",
        "unit": "N/A",
        "source_id": "460b29c68f3590c1a6500b719cf9b4fc41f16b09d3ebb2a6c337fe41c1a75040"
      },
      {
        "country_iso_code": "US",
        "event_code": "BUSINESS_PMI_NON_MANUFACTURING_PRICES_ISM",
        "event_name": "ISM Non-Manufacturing Prices",
        "event_driven_type": "time_driven",
        "importance": 3,
        "impact": "high",
        "event_timestamp": "2024-08-05T13:00:00Z",
        "actual_value": 57.0,
        "previous_value": 56.3,
        "forecast_value": 56.0,
        "change": 0.7,
        "change_percent": 0.0,
        "period": "Jul",
        "unit": "N/A",
        "source_id": "2189bd77ba5a7b278a60b0128fa6b609ba65f13cad7c699d065fe655e5a510af"
      }
    ]
  }
}
  

Code Example

Python

  import os
from datetime import datetime, timedelta
from aitrados_api import ClientConfig
from aitrados_api import DatasetClient

config = ClientConfig(
    secret_key=os.getenv("AITRADOS_SECRET_KEY","YOUR_SECRET_KEY"),
)

client = DatasetClient(config=config)

# Get economic event list for US

for event_list in  client.economic.event_list(country_iso_code="US"):
    print(event_list)


# Get economic events with specific event code (e.g., inflation rate)
for event_list in  client.economic.event_list(
    country_iso_code="US",
    event_code="INFLATION_RATE_HEADLINE_YOY",
    limit=10
):
    print(event_list)
  

Notes

  1. The importance field (numeric value 1-3) and impact field (text “low”, “medium”, “high”) help identify which events are likely to have the most significant market impact. High importance events (importance=3) are typically major releases like GDP, inflation, or central bank decisions.

  2. The event_driven_type field distinguishes between regularly scheduled economic releases (“time_driven”) and events that occur in response to specific conditions.

  3. The change and change_percent fields help quickly identify the magnitude and direction of change in an economic indicator compared to its previous reading.

  4. For comprehensive market analysis, it’s valuable to compare the actual_value against both the forecast_value (market expectations) and previous_value (trend). Significant deviations between actual and forecast values often trigger market volatility.

  5. The period field indicates the time period covered by the data (e.g., month, quarter). This is important for contextualizing the data, especially for seasonal indicators.

  6. Using the next_page_key parameter enables efficient pagination through large datasets when the number of events exceeds the limit parameter.

  7. The source_id field provides a unique identifier for the data source, which can be useful for tracking or referencing specific data points in your applications.

  8. When analyzing economic events across multiple countries, consider using the ISO country codes to systematically retrieve and compare data across different economies.